Aljabar Boolean

Suryo satrio Wibowo
5 min readJan 12, 2021

--

Aljabar Boolean adalah struktur aljabar yang “mencakup intisari” operasi logika AND, OR, NOR, dan NAND dan juga teori himpunan untuk operasi union, interseksi dan komplemen.

Penamaan Aljabar Boolean sendiri berasal dari nama seorang matematikawan asal Inggris, bernama George Boole. Dialah yang pertama kali mendefinisikan istilah itu sebagai bagian dari sistem logika pada pertengahan abad ke-19.

Boolean adalah suatu tipe data yang hanya mempunyai dua nilai. Yaitu true atau false (benar atau salah).

Pada beberapa bahasa pemograman nilai true bisa digantikan 1 dan nilai false digantikan 0.

aljabar Boolean jika untuk setiap a, b, c Î B berlaku aksioma-aksioma atau postulat Huntington berikut:

1. Closure: (i) a + b Î B

(ii) a × b Î B

2. Identitas: (i) a + 0 = a

(ii) a × 1 = a

3. Komutatif: (i) a + b = b + a

(ii) a × b = b . a

4. Distributif: (i) a × (b + c) = (a × b) + (a × c)

(ii) a + (b × c) = (a + b) × (a + c)

5. Komplemen[1]: (i) a + a’ = 1

(ii) a × a’ = 0

Untuk mempunyai sebuah aljabar Boolean, harus diperlihatkan:

1. Elemen-elemen himpunan B,

2. Kaidah operasi untuk operator biner dan

operator uner,

3. Memenuhi postulat Huntington.

Aljabar Boolean Dua-Nilai

Aljabar Boolean dua-nilai:

- B = {0, 1}

- operator biner, + dan ×

- operator uner, ’

- Kaidah untuk operator biner dan operator uner :

Cek apakah memenuhi postulat Huntington:

1. Closure : jelas berlaku

2. Identitas: jelas berlaku karena dari tabel dapat kita lihat bahwa:

(i) 0 + 1 = 1 + 0 = 1

(ii) 1 × 0 = 0 × 1 = 0

3. Komutatif: jelas berlaku dengan melihat simetri tabel operator biner.

4. Distributif: (i) a × (b + c) = (a × b) + (a × c) dapat ditunjukkan benar dari tabel operator biner di atas dengan membentuk tabel kebenaran:

(ii) Hukum distributif a + (b × c) = (a + b) × (a + c) dapat ditunjukkan benar dengan membuat tabel kebenaran dengan cara yang sama seperti (i).

5. Komplemen: jelas berlaku karena Tabel 7.3 memperlihatkan bahwa:

(i) a + a‘ = 1, karena 0 + 0’= 0 + 1 = 1 dan 1 + 1’= 1 + 0 = 1

(ii) a × a = 0, karena 0 × 0’= 0 × 1 = 0 dan 1 × 1’ = 1 × 0 = 0

Karena kelima postulat Huntington dipenuhi, maka terbukti bahwa B = {0, 1} bersama-sama dengan operator biner + dan × operator komplemen ‘ merupakan aljabar Boolean.

Ekspresi Boolean

Misalkan (B, +, ×, ’) adalah sebuah aljabar Boolean. Suatu ekspresi Boolean dalam (B, +, ×, ’) adalah:

(i) setiap elemen di dalam B,

(ii) setiap peubah,

(iii) jika e1 dan e2 adalah ekspresi Boolean, maka e1 + e2, e1 × e2, e1’ adalah ekspresi Boolean

Contoh:

0

1

a

b

a + b

a × b

a’× (b + c)

a × b’ + a × b × c’ + b’, dan sebagainya

Mengevaluasi Ekspresi Boolean

Contoh: a’× (b + c)

jika a = 0, b = 1, dan c = 0, maka hasil evaluasi ekspresi:

0’× (1 + 0) = 1 × 1 = 1

Dua ekspresi Boolean dikatakan ekivalen (dilambangkan dengan ‘=’) jika keduanya mempunyai nilai yang sama untuk setiap pemberian nilai-nilai kepada n peubah.

Contoh:

a × (b + c) = (a . b) + (a × c)

Contoh. Perlihatkan bahwa a + ab = a + b .

Penyelesaian:

Perjanjian:

tanda titik (×) dapat dihilangkan dari penulisan ekspresi Boolean, kecuali jika ada penekanan:

(i) a(b + c) = ab + ac

(ii) a + bc = (a + b) (a + c)

(iii) a × 0 , bukan a0

Prinsip Dualitas

Misalkan S adalah kesamaan (identity) di dalam aljabar Boolean yang melibatkan operator +, ×, dan komplemen, maka jika pernyataan S* diperoleh dengan cara mengganti

× dengan +

+ dengan ×

0 dengan 1

1 dengan 0

dan membiarkan operator komplemen tetap apa adanya, maka kesamaan S* juga benar. S* disebut sebagai dual dari S.

Contoh.

(i) (a × 1)(0 + a’) = 0 dualnya (a + 0) + (1 × a’) = 1

(ii) a(a‘ + b) = ab dualnya a + ab = a + b

Hukum-hukum Aljabar Boolean

Fungsi Boolean

Fungsi Boolean (disebut juga fungsi biner) adalah pemetaan dari Bn ke B melalui ekspresi Boolean, kita menuliskannya sebagai

f : BnB

yang dalam hal ini Bn adalah himpunan yang beranggotakan pasangan terurut ganda-n (ordered n-tuple) di dalam daerah asal B.

  • Setiap ekspresi Boolean tidak lain merupakan fungsi Boolean.
  • Misalkan sebuah fungsi Boolean adalah f(x, y, z) = xyz + xy + y
  • Fungsi f memetakan nilai-nilai pasangan terurut ganda-3

(x, y, z) ke himpunan {0, 1}.

Contohnya, (1, 0, 1) yang berarti x = 1, y = 0, dan z = 1

sehingga f(1, 0, 1) = 1 × 0 × 1 + 1’ × 0 + 0’× 1 = 0 + 0 + 1 = 1 .

Contoh-contoh fungsi Boolean yang lain:

1. f(x) = x

2. f(x, y) = xy + xy’+ y

3. f(x, y) = x y

4. f(x, y) = (x + y)’

5. f(x, y, z) = xyz

Setiap peubah di dalam fungsi Boolean, termasuk dalam bentuk komplemennya, disebut literal.

0

1

a

b

a + b

a × b

a’× (b + c)

a × b’ + a × b × c’ + b’, dan sebagainya

--

--

Suryo satrio Wibowo
Suryo satrio Wibowo

Written by Suryo satrio Wibowo

Mahasiswa TI Universitas Proklamasi 45

No responses yet